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Summary. Since Corrado Gini suggested the index that bears his name as a way of measuring
inequality, the computation of variance of the Gini index has been subject to numerous pub-
lications. We survey a large part of the literature related to the topic and show that the same
results, as well as the same errors, have been republished several times, often with a clear lack
of reference to previous work.Whereas existing literature on the subject is very fragmented, we
regroup references from various fields and attempt to bring a wider view of the problem. More-
over, we try to explain how this situation occurred and the main issues that are involved when
trying to perform inference on the Gini index, especially under complex sampling designs. The
interest of several linearization methods is discussed and the contribution of recent references
is evaluated. Also, a general result to linearize a quadratic form is given, allowing the approx-
imation of variance to be computed in only a few lines of calculation. Finally, the relevance of
the regression-based approach is evaluated and an empirical comparison is proposed.
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1. Introduction

Despite the fact that the Gini index is the most widely used indicator of income inequality in 
a population, it is not a trivial measure to handle. To start with, its construction is not easy to 
understand for an uninitiated audience. Also, because the Gini index of a population is com-
monly estimated by means of a sample, its estimation should be completed by some knowledge 
of the accuracy of the point estimate, namely by reporting a variance estimator or standard 
error, allowing for the computation of a confidence interval. Since the Gini index is a non-lin-
ear function of interest, variance estimation is not straightforward, especially when data are 
collected by means of a complex sampling strategy. Thus, the computation of the sampling 
variance of the Gini index has prompted a great amount of research in statistics and economics.

Although the problem has now mostly been solved, the result has been republished many 
times in recent years. The original motivation of this paper is to understand why. For that pur-
pose, we survey a large portion of the literature on the subject in a historical perspective. A 
thorough analysis of the evolution of the literature has stressed two important features: the 
main methodological issue in the computation of variance of the Gini index has sometimes 
been overlooked, and a serious lack of references to previous works is often witnessed.

One of the main contributions of this paper is to present and compare many different 
approaches to variance estimation of the Gini index. Additionally we give a general result 
on the linearization of a quadratic form which allows the initially intricate problem to become 
computationally quite simple. We also show why the regression-based methods, which have
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attracted much attention recently, should be avoided. Finally, although publications on the
topic have arisen from different fields, we try to propose a global clarification of the present
state of the art on the subject.

In the next section, the Gini index and estimators are presented. A discussion on the evolution
and issues regarding variance estimation of the index is proposed in Section 3. Section 4 is dedi-
catedto linearizationtechniques,whichencompassavarietyofapproaches forderivingavariance
estimator. Many approaches are presented and a new result allowing for a fast linearization of the
Gini index is suggested. The relevance of recent publications is also discussed. In Section 5, we
examine the so-called regression approach which has prompted many recent research studies.
Finally, a comparative numerical application is performed in Section 6. To show the shortcom-
ings of the regression approach, an empirical study was conducted using the same data as in two
recent references (Giles, 2004; Davidson, 2009). The paper ends with some concluding remarks.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://www.blackwellpublishing.com/rss

2. The Gini index

2.1. Definitio and estimation in an infinit population
Like several other inequality measures, the Gini (1912, 1914, 1921) index is based on the cumu-
lative income of a proportion of the poorer units. Let f.y/ be a probability density function
of a positive continuous random variable Y that represents the income and F.y/ its cumulative
distribution function. First define the Lorenz (1905) curve given by

L.α/=

∫ F−1.α/

0
yf.y/dy∫ ∞

0
yf.y/dy

= 1
μ

∫ α

0
F−1.u/du,

where F−1.·/ is the inverse function of F.·/ and

μ=
∫ ∞

0
yf.y/dy:

The Gini index can be defined in several ways (see, for example, Xu (2004)):

G=2
∫ 1

0
{α−L.α/}dα=1−2

∫ 1

0
L.α/dα= 2

μ

∫ ∞

0
yF.y/f.y/dy −1: .1/

If yi, i=1, : : : , n, is a sequence of positive random variables with the same probability density
function f.·/, the Gini index G can be estimated by

Ĝ=
2

n∑
i=1

iy.i/

n
n∑

i=1
y.i/

− n+1
n

, .2/

where the y.i/ are the yi ordered in increasing order. This expression can be found for example
in Sen (1973) or Fei et al. (1978). A complete review of all the expressions of the Gini index that
were proposed originally by Corrado Gini is found in Ceriani and Verme (2011). Note also that a
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controversy exists on the use of ˆ̃
G=nĜ=.n− 1/ instead of Ĝ. Indeed, ˆ̃

G is less biased than Ĝ,
but the latter will be used hereafter because the construction of ˆ̃

G becomes difficult when the
observations are weighted.

2.2. Definitio and estimation in a finit population
The Gini index is generally estimated by means of a sample survey. In survey sampling, we
are interested in a finite population U ={1, . . . , k, . . . , N} of size N from which a random sam-
ple S of size n is selected by means of a sampling design p.s/ = Pr.S = s/, for all s ∈ U: Let
also πk = Pr.k ∈ S/ denote the inclusion probability of unit k ∈ U and dk = 1=πk the Horvitz
and Thompson (1952) weights. In survey methodology, the observations are usually weighted.
The sampling weight wk that is associated with observation k can be equal to dk or can be
improved by a calibration technique (Deville and Särndal, 1992) or a non-response adjustment.
Let y1, : : : , yk, : : : , yN denote the incomes of the units in the population. Let also Nk and nk

denote the rank of unit k in population U and in sample S respectively, with tied observa-
tions treated by using increasing integer ranks such that, for example, the series of observations
4, 6, 6, 8 would be assigned ranks 1, 2, 3, 4. To estimate totals

Y = ∑
k∈U

yk

and

N = ∑
k∈U

1,

we can use weighted estimators

Ŷ =∑
k∈S

wkyk

and

N̂ =∑
k∈S

wk:

The total income of the αN poorest units is defined by

Ỹ .α/= ∑
k∈U

yk 1.yk �Qα/,

where Qα is the α-quantile and 1.A/ is an indicator function equal to 1 if A is true and 0
otherwise. However, this definition is not very accurate because the quantiles can be defined
in several ways when the cumulative distribution function is a step function (for a review, see
Hyndman and Fan (1996)). We thus prefer to use the less ambiguous definition of the total
income of the αN poorest units that was proposed in Langel and Tillé (2011) and given by

Y.α/= ∑
k∈U

yk H.αN −Nk−1/,

where H.·/ is the cumulative distribution function of a uniform [0,1] random variable

H.x/=
{0 if x< 0,

x if 0�x< 1,
1 if x�1.
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The function of interest Y.α/ is then strictly increasing in α in .0, 1/, which is not the case for
Ỹ .α/. To estimate Y.α/, we can use

Ŷ .α/=∑
k∈S

wkyk H

(
αN̂ − N̂k−1

wk

)
where N̂k are the cumulative weights of the sampled units, i.e.

N̂k =∑
l∈S

wl 1.nl �nk/, .3/

and N̂0 =0. Expression Y.α/ is also strictly increasing in α in .0, 1/. In a finite population, the
Lorenz curve can then be defined by

L.α/=Y.α/=Y , .4/

and can be estimated by

L̂.α/= Ŷ .α/=Ŷ : .5/

Accordingly, functions L.α/ and L̂.α/ are also strictly increasing in .0, 1/. If we use the definition
of the Lorenz curve that is given in equation (4) and the Gini index as given in equation (1), we
obtain, after some algebra, the following expressions of the Gini index for a finite population:

G= 2
NY

∑
k∈U

Nkyk − N +1
N

=

∑
k∈U

∑
l∈U

|yk −yl|
2NY

:

Finally, if we use the estimator of the Lorenz curve that is given in equation (5), we obtain an
estimator of the Gini index for weighted observations:

Ĝ= 2

N̂Ŷ

∑
k∈S

wkN̂kyk −
(

1+ 1

N̂Ŷ

∑
k∈S

w2
kyk

)

=
2
∑
k∈S

wkN̂kyk −∑
k∈S

w2
kyk

N̂Ŷ
−1 .6/

=

∑
k∈S

wkyk.2N̂k − N̂ −wk/

N̂Ŷ
.7/

=

∑
k∈S

∑
l∈S

wkwl|yk −yl|

2N̂Ŷ
: .8/

L̂.α/ and Ĝ are generally biased. If, instead of equation (5), the Lorenz curve is estimated
through an empirical distribution function (step function), the resulting expression of Ĝ may
differ from that proposed above, depending on the type of step function that is used (see also
Davidson (2009)). Our approach avoids this ambiguity.

3. Variance estimation: a result several times published

3.1. First results and evolution
The evolution of literature on the variance of the Gini index may be summarized as follows.
Until the 1980s, the number of papers devoted to the subject was very limited. This period
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of time is briefly discussed below. Research was then split into three main directions: survey
sampling, robust statistics and economics.

The first calculation of variance relating to the Gini index was probably realized by Nair
(1936) who computed the exact variance of the Gini mean difference, i.e. the numerator of
expression (8) of the Gini index. The proposed expression of variance is nevertheless particu-
larly cumbersome, even in the simplest case of unweighted observations that was presented by
Nair. In a survey context, it is also always possible to compute the variance of a double sum
like the Gini mean difference, but the computation requires inclusion probabilities up to the
fourth order (see for example Ardilly and Tillé (2006)). Lomnicki (1952) and Glasser (1962) have
approximated this expression and gave simpler variance estimators. The chronology between
these three references is clear: Lomnicki (1952) refers to Nair (1936), whereas Glasser (1962)
cites both. Finally, Sillitto (1969) also computed an expression for the variance of the Gini mean
difference by using L-moments to approximate the quantile function by polynomials (see also
Hosking (1990)).

Meanwhile, one of the first results for the variance of the full Gini index is attributed to
Hoeffding (1948). After defining the notion of U-statistics based on earlier work by Halmos
(1946) and expressing the variance of a U-statistic, Hoeffding showed that the Gini index is a
function of two U-statistics and gave a result for the variance of the Gini index. In addition to
giving a general form and an unbiased estimator for the variance of the Gini mean difference by
using some results on U-statistics, Glasser (1962) proposed an approximation of the variance
of the Gini index for simple random sampling without replacement from a finite population.

Expressions for an asymptotic variance of the Gini index have also been given by Sendler
(1979) based on results of Shorack (1972) on functions of order statistics, by Cowell (1989) who
generalized the U-statistic approach to weighted observations, as well as by Schechtman (1991)
who combined the work of Hoeffding (1948) and the idea of the infinitesimal jackknife (Jaeckel,
1972). In related topics, Gastwirth (1972) computed lower and upper bounds for the estimated
Gini index, whereas Beach and Davidson (1983) proposed inference on the Lorenz curve.

3.2. Fragmentation of the literature
Because the measure is widely used in practice (in official statistics or policy making for exam-
ple), the question of sampling variance of the Gini index has interested scholars from partially
unrelated domains. When analysing the whole corpus of literature, a clear separation between
publications from the field of statistics and publications in economic journals is witnessed. As
papers from one field are seldom cited in the other, it seems evident that researchers from these
two fields do not necessarily read each other’s work. Moreover, inside statistical literature, some
contributions come from survey sampling whereas others come from robust statistics.

In the past 20 years, the gap between the economic and statistical literature on the Gini index
seems to have become wider. The survey paper by Xu (2004) is a perfect illustration of this
fragmentation. In this paper, which reviews literature on the Gini index across the 20th century,
no references are made to survey sampling studies on the topic. Moreover, papers from robust
statistics are not mentioned either. One could argue that this paper does not focus on inference
per se but, in another paper, Xu (2007) proposed an introductory overview of inference for the
Gini index, in which the literature from robust statistics and survey sampling of the last two
decades is also absent.

The variety of existing methods to tackle the problem is another obstacle to a unified under-
standing of the latter. Indeed, at least three general categories of approach have been used:
linearization (or asymptotic theory-based) methods, resampling methods and regression-based
methods. Moreover, each of these categories encompass many different techniques.

5



In Section 4, several linearization techniques are presented. Linearization-based computation
of variance of the Gini index has generated a large amount of literature and, thus, embodies
the main focus of this paper. Furthermore, even after the problem of linearizing the Gini index
had been solved, the result has been republished several times. The main reason why such a
situation happened is probably the plurality of approaches that can be defined as linearization
methods: direct computation of variance, use of estimating equations, computation of influ-
ence functions, the delta method or the Demnati and Rao (2004) method. These methods lead
to the same result but are done by using different developments. Moreover, whereas some of
these approaches have indeed been proposed directly for variance approximation, some were
developed for other purposes such as robustness analysis.

The regression-based methods are described in Section 5. A jackknife approach is also dis-
cussed inside the regression section as well as in the empirical illustrations. Bootstrap methods
are not treated in this paper but have also been applied to propose Gini index standard errors
(Mills and Zandvakili, 1997; Kuan, 2000; Giorgi et al., 2006). Finally, note that the problem has
recently been addressed using the empirical likelihood method (Qin et al., 2010; Peng, 2011).

3.3. The pitfall of the computation of the variance
There is certainly another, more methodological, reason why variance estimation for the Gini
index has resulted in many publications. From today’s point of view the problem seems quite
simple; thus we show in Section 4 a result which gives an expression for the variance in only
a few lines of calculation, but the complexity of the statistic has been a challenge for variance
estimation in the past. In particular, some researchers who proposed straightforward or simpli-
fied solutions were in fact falling into a methodological pitfall. This pitfall can be described as
follows: when we examine expression (6) of the estimated Gini index, we could believe that the
numerator is composed of two simple sums and that an expression of the variance can be directly
derived. Unfortunately, this reasoning is mistaken. Indeed, the quantity N̂k that is defined in
equation (3) is an estimator of Nk, the rank of unit k in the population, and it is random because
its value depends on the sample selected. Thus, part of the variability of the estimated Gini index
is due to N̂k, and this aspect must be taken into account. As shown by Sandström et al. (1985,
1988), the variance of the index is in fact considerably overestimated when this randomness is
not taken care of.

One could imagine some situations where the rank is known in the population, e.g. when the
sample is selected from a register. This question has been discussed by Deville (1996). If so,
computing the variance of the Gini index amounts to expressing the variance of a ratio. The
estimator of the Gini index nevertheless has a smaller variance when an estimator of the rank
is used rather than the true population rank. Although this overestimation may at first seem
surprising, it can be easily illustrated. Suppose that an unexpected number of high incomes are
selected in the sample. The true population rank Nk of selected unit k will then have a tendency
to be underestimated by N̂k. If, in contrast, very few high incomes are selected, N̂k will have a
tendency to overestimate the rank of unit k. The sampling distribution of Σk∈S wkN̂kyk becomes
less scattered than that of the respective expression computed with the true population rank,
namely Σk∈S wkNkyk, resulting in a smaller variance for the Gini index that is estimated by using
the former sum.

4. Linearization techniques

4.1. Rationale behind linearization
Linearization combines a range of techniques used to calculate the approximated variance of
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a non-linear statistic. It consists in approximating a non-linear or complex statistic (here, the
Gini index) by a sum of terms, i.e. finding a linearized variable zk such that

Ĝ−G≈∑
k∈S

wkzk − ∑
k∈U

zk:

Next, the variance of Ĝ is simply approximated by the variance of the estimated total

Ẑ =∑
k∈S

wkzk:

Nevertheless, the zks often depend on population parameters that must be estimated. By esti-
mating these parameters, we can obtain ẑk an estimator of zk and thus construct an estimator
of variance by plugging ẑk into the expression of the variance of a total corresponding to the
given sampling design. Thus, the method is applicable to any sampling design, provided that an
expression for the variance of the total is known. For instance, if the sampling design is simple
without replacement, with fixed sample size n, we have the estimator

v̂arlin.Ĝ/= N −n

Nn.n−1/

∑
k∈S

.ẑk − ¯̂z/2, .9/

where

¯̂z= 1
n

∑
k∈S

ẑk:

For details on the asymptotic framework validating linearization, one can relate to Isaki and
Fuller (1982), Deville and Särndal (1992) and Deville (1999). Without using this terminology,
Glasser (1962) already pointed out that the linearized variable given by

uk =2
∑
l∈U

|yk −yl| .10/

can be used to approximate the variance of the Gini mean difference by plugging it into the
estimator of variance of a total in place of the interest variable. For instance, if the sampling
design is simple without replacement with fixed sample size n, we have the approximation of
variance

Avar.Â/=N2 N −n

Nn.n−1/

∑
k∈U

.uk − ū/2,

where

Â=∑
k∈S

∑
l∈S

|yk −yl|

and

ū= 1
N

∑
k∈U

uk:

4.2. Taylor series expansion
In practice, there are several ways to calculate this linearized variable. For smooth functions of
totals, one can linearize by performing a Taylor series expansion with respect to these totals
(Woodruff, 1971). In the survey sampling literature, Nygård and Sandström (1981, 1985, 1989)
and especially Sandström et al. (1985, 1988) are usually considered as seminal works on the
variance of the Gini index. Sandström et al. (1985, 1988) discussed four variance estimators for

7



the Gini index: first in simple random sampling; then in unequal probability sampling. Further-
more, Sandström et al. (1988) showed links between their work and those of Glasser (1962) or
Sendler (1979). Two of the estimators that were presented in Sandström et al. (1985, 1988) are
based on a first-order Taylor series approximation and are thus probably the first explicit ten-
tative linearization of the Gini index. However, the results have been shown to be only partially
satisfactory because the Gini index cannot be expressed as a smooth function of totals.

For the first estimator (the ratio estimator) that was presented by Sandström et al. (1985,
1988) the Gini index is simply considered to be a ratio of totals. Thus, the classical first-order
Taylor series approximation of a ratio is used to linearize the index. They noted that this esti-
mator does not take into account the fact that the ranks depend on the other units in the sample
(namely, that N̂k is random) and that these ranks should be estimated in some way. These con-
clusions are in line with the pitfall that was discussed in Section 3.3. Indeed, the ratio estimator
is unsatisfactory because it can only be constructed if the Gini index is mistakenly interpreted
as a function of totals.

The second estimator (which is hereafter denoted the Taylor estimator) that was proposed by
Sandström et al. (1985, 1988) is also based on Taylor series but this time it takes the randomness
of the ranks into account. However, the expression is cumbersome in the simple random sam-
pling case and becomes virtually inapplicable in the probability sampling framework because it
requires joint inclusion probabilities up to order 4.

In opposition to the first two design-based estimators, the third proposed estimator is what
Sandström et al. (1985, 1988) call a model-based estimator, denoting that the observations are
realizations of independent, identically distributed random variables which form a fixed, given,
sample. This estimator is related to the U-statistics approach, and, under simple random sam-
pling, reduces to the variance estimator that was proposed by Sendler (1979). The last estimator
discussed is a straightforward jackknife estimator.

In Sandström et al. (1985), the simulation studies under simple random sampling show that
the first ratio estimator, which is the only estimator to treat the ranks as constants, greatly over-
estimates the variance. This should act as an indication that handling the random ranks issue is
crucial. Other estimators show good results. In the probability sampling case (Sandström et al.,
1988), the ratio estimator is unsurprisingly also ineffective and the Taylor estimator is, as noted
previously, not applicable. Thus, in that situation, only the jackknife and the model-based esti-
mators were considered satisfactory by them. Sandström et al. (1988) also noted that the Taylor
estimator is similar to that of Glasser (1962) and that, when both sample and finite population
sizes become large, the Taylor and model-based estimators are equal.

4.3. Influenc functions
When the function of interest is, like the Gini index, not a function of totals, a more radical way
of computing a linearized variable involves computing the influence function that was initially
proposed by Hampel (1974) and Hampel et al. (1985). The influence function was first proposed
to study the robustness of an estimator but can also be used to approximate the variance. The
influence function of the Gini index seems to have been computed for the first time by Monti
(1991) and next by Cowell and Victoria-Feser (1996, 2003) but was used to make the Gini esti-
mator robust rather than to estimate the variance. The influence function of the Gini index that
was given by Monti (1991) can be rewritten

zk = 1
NY

{2Nk.yk − Ȳ k/+Y −Nyk −G.Y +ykN/}, .11/

where
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Ȳ k =

∑
l∈U

 yl 1.Nl �Nk/

Nk
:

The result that was obtained by Monti (1991) has been overlooked by survey statisticians,
probably because the role of the influence function as a tool for variance estimation was not
well established.

We shall show in the next sections that this linearized variable can be computed in only a few
lines of calculation by means of different methods. This linearized variable can be estimated by

ẑk = 1

N̂Ŷ
{2N̂k.yk − ˆ̄Yk/+ Ŷ − N̂yk − Ĝ.Ŷ +ykN̂/}, .12/

where

ˆ̄Yk =

∑
l∈S

wlyl 1.N̂l � N̂k/

N̂k

:

4.4. Estimating equations
Another method that is used to compute a linearized variable for the Gini index is to express it
as the solution of an estimating equation (Binder and Kovacevic, 1995; Kovacevic and Binder,
1997). Using the estimating equation methodology (for details on this approach, see for example
Binder and Patak (1994)), a linearized variable for the Gini index is derived. The result is equal
to that of expression (11) and can be estimated by equation (12).

4.5. Deville approach
Deville (1996) used Sandström et al. (1985, 1988) as a starting point for the linearization of
the Gini index. He identified clearly the source of the overestimation that was obtained by
Sandström et al. (1985, 1988) when the randomness of the ranks was neglected. Later, Deville
(1999) proposed a modified version of the influence function to compute a linearized variable
for sampling from a finite population. Unfortunately, in Deville (1999), a term is missing in the
final expression of the linearized variable of the Gini index.

To define the influence function, Deville used a measure M with unit mass for each point of
the population. According to Deville’s definition, the measure M is positive, discrete, with a
total mass N whereas the total mass is equal to 1 for the measure used in the influence function
proposed by Hampel (1974). A function of interest can be presented as a functional T.M/ that
associates for each measure a real number or a vector. For instance, a total Y can be written

Y =
∫

y dM = ∑
k∈U

yk:

Besides, we also suppose that the functionals considered are homogeneous in the sense that
there always exists a real number α such that

T.tM/= tα T.M/, for all t ∈RÅ
+:

Coefficient α is called the degree of the functional T.M/. The measure M is estimated by a
measure M̂ that has a mass equal to wk for each point xk of sample S. The plug-in estimator of
a functional T.M/ is simply T.M̂/: For instance, the estimator of a total is given by∫

ydM̂ =∑
k∈S

wkyk:
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Deville’s influence function is defined by

IT.M, x/= lim
t→0

T.M + tδx/−T.M/

t
,

when this limit exists, where δx is the Dirac measure at point x. This influence function is the
Gâteaux differential in the direction of the Dirac mass at point x. Deville (1999) showed that
this influence function zk = IT.M, xk/ is a linearized variable of T.M̂/ in the sense that it allows
for the approximation of the interest function:

T.M̂/−T.M/

Nα
≈ 1

Nα

(∑
k∈S

wkzk − ∑
k∈U

zk

)
:

The approximation of the variance of T.M̂/ is obtained by computing the variance of the
weighted sum of zk on the sample:

Avar{T.M̂/}=var
(∑

k∈S

wkzk

)
:

The influence function generally depends on population parameters that are unknown and can
simply be estimated by replacing the latter by their plug-in estimators. Thereby, we obtain ẑk,
the estimator of the linearized variable zk. Computation of influence functions follows the rules
of differential calculus. Deville (1999) has shown, among other properties, the following results.

Result 1. If T.M/=Σk∈U yk =∫ ydM.y/, then the influence function is IT.M, xk/=yk:

Result 2. Let S be a functional of Rq and Tλ a family of functionals that depend of λ∈Rq;
then

I.TS/= I.Tλ=S/+ @T
@λ

∣∣∣∣
λ=S

IS:

Result 2 shows that the computation of the influence function can also be realized by steps.
We propose hereafter an additional result that enables us to compute the linearized variable of
a double sum (e.g. quadratic form) directly such that

S = ∑
k∈U

∑
l∈U

φ.yk, yl/:

Result 3. If

S.M/=
∫ ∫

φ.x, y/dM.x/dM.y/,

where φ.·, ·/ is a function from R2 in R, then

IS.M, ξ/=
∫

φ.x, ξ/dM.x/+
∫

φ.ξ, y/dM.y/:

The proof is given in Appendix A.
If φ.x, y/=φ.y, x/ for all x and y then the influence function can simply be written as

IS.M, ξ/=2
∫

φ.x, ξ/dM.x/:

Result 3 allows for a fast computation of the linearized variable of the Gini index. The latter
can be written

G=A=2NY ,
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where A is a double sum:

A= ∑
k∈U

∑
l∈U

|yk −yl|:

By using result 3, we obtain a linearized variable of A immediately:

IA.M, xk/=2
∑
l∈U

|yk −yl|=2{2Nk.yk − Ȳ k/+Y −Nyk},

which is the result that was presented in expression (10) obtained by Glasser (1962) by using a
different method. Now, if we apply the technique of linearization by steps as well as result 1 for
totals Y and N, we obtain a linearized variable of the Gini index

zk = IG.M, xk/= IA.M, xk/

2NY
− A

2N2Y
IN.M, xk/− A

2NY2 IY.M, xk/

= 1
NY

{
IA.M, xk/

2
−G.Y +ykN/

}
= 1

NY
{2Nk.yk − Ȳ k/+Y −Nyk −G.Y +ykN/},

which is the result that was proposed in Monti (1991) and can be estimated by equation (12).

4.6. Demnati and Rao approach
A fast technique to obtain a direct linearized variable consists in computing the Deville influence
function, not on the measure M but on the estimated measure M̂. We then obtain

IT.M̂, xk/= lim
t→0

T.M̂ + tδx/−T.M̂/

t
:

Measure M̂ has a mass equal to wk for each point xk of the sample. If we refer to the definition
of the derivative, we can note that a simple way to obtain a linearized variable is to differentiate
the estimate with respect to wk:

IT.M̂, yk/= @T.M̂/

@wk
:

The computation of a simple derivative with respect to the weights was advocated by Demnati
and Rao (2004) to compute the linearized variable of a function of totals. This method also
enables us to compute a linearized variable for any function of interest whose observations are
weighted by wk: By computing the derivative of expression (6) with respect to wk, we obtain, in
a couple of lines, the estimator of the linearized variable that is given in expression (12). The
result is exactly the same as that obtained by Deville’s method.

4.7. Graf approach
Recently Graf (2011) has proposed another way of computing the linearized variable by apply-
ing a Taylor series expansion with respect to the indicator variables Ik, where for all k ∈U

Ik =
{

1 if k ∈S,
0 if k =∈S,

determines the presence of unit k in the sample. The Graf method is coherent because the expan-
sion is done with respect to the only source of randomness in the estimator. In sampling from
a finite population, the estimator of the Gini index Ĝ can be written as a function of these
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indicator variables: Ĝ = Q.I1, : : :  , Ik, : : :  , IN /. By using a Taylor series expansion, we can then 
write

Q.I1, : : : , Ik, : : : , IN/≈Q.π1, : : : , πk, : : : , πN/+ ∑
k∈U

.Ik −πk/Q′
k, .13/

where Q′
k.·/ is the partial derivative of Q.I1, : : : , Ik, : : : , IN/ with respect to Ik: Since

Q.πk, : : : , πk, : : : , πN/=G,

we can then compute a linearized variable as

zk = IkQ′
k:

From expression (13), we obtain

Ĝ−G≈∑
k∈S

zk

πk
− ∑

k∈U

zk:

If we use the Horvitz–Thompson weights dk =1=πk, expression (6) can be written

Ĝ=

∑
k∈U

∑
l∈U

dkdl|yk −yl|IkIl

2
∑
k∈U

dkIk

∑
k∈U

dkIkyk
:

The computation of IkQ′
k directly gives expression (12). Note that, in all the proposed linear-

ization methods, if the weights are not fixed but depend on the Iks (e.g. if they result from a
calibration procedure) they must be differentiated as well. The advantage of the Graf approach,
however, is that the effect of the calibration procedure on the estimator is directly accounted
for when the weights are differentiated with respect to Ik.

4.8. Other recent publications
In survey sampling, Dell et al. (2002) and Osier (2006, 2009) also showed results based on
the influence function in the sense of Deville. Both derived a linearized variable for various
inequality and poverty measures including the Gini index as well as application to survey data.
Although the whole technique and computation rules were attributed to Deville (1999) in Dell
et al. (2002) and Osier (2006, 2009), the result for the Gini index was not presented as a problem
already solved.

In the work of Cowell and Victoria-Feser (2003), the influence function result by Monti (1991)
is presented and reference to Deville (1999) is made to show that influence functions can also
be used for variance estimation, not only to study robustness. Finally, the computation of the
influence function and the approximation of the variance of the Gini index by linearization are
presented as well-known results in the works of Berger (2008) and Lesage (2009): the former
referring to Kovacevic and Binder (1997); the latter citing Deville (1999).

Outside survey statistics, the same result by using different methodologies related to influ-
ence functions and linearization has also been republished at least three times in recent years
(Bhattacharya, 2007; Davidson, 2009; Barrett and Donald, 2009). The common point of these
papers is an obvious lack of references to prior papers from robust and survey statistics, nor
to seminal papers like Hoeffding (1948) or Glasser (1962). The fact is that these papers all pro-
pose a short ‘historical’ introduction on the state of the art of the problem, in which the whole
literature presented in Sections 3 and 4 is absent. They are briefly discussed below.

Bhattacharya (2007) has proposed asymptotic inference for the Gini index by using an asymp-
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totic framework based on a generalized method of moments and empirical process theory. An
influence function for the Gini index is derived and the method is extended to clustered and
stratified sampling. Although the outcome is similar to that in previous references, the devel-
opment and theoretical basis are different. Bhattacharya (2007) made no reference to previous
research studies on the influence function of the Gini index. Instead Cowell (1989), Zheng (2001)
or Bishop et al. (1997) and an earlier draft of Barrett and Donald (2009) were cited. Moreover,
Bhattacharya noted that existing literature on inference for inequality measures has almost
always assumed simple random sampling, whereas we have shown that many references in the
survey sampling literature have tackled the issue of complex sampling designs.

In Davidson (2009), the delta method is used to produce an asymptotically valid expression
for the variance of the Gini index. The paper starts with a brief history of the subject. Reference
is made to recent papers (Bishop et al., 1997; Xu, 2007) on the U-statistic approach instead of
older papers like Hoeffding (1948), as well as references from the regression-based approach.
From survey sampling literature, only Sandström et al. (1988) is cited. The proposed variance
estimator for the Gini index is constructed via the delta method and the result that was obtained
is equivalent to earlier suggestions in Monti (1991), Kovacevic and Binder (1997), Deville (1999)
or Cowell and Victoria-Feser (1996). The numerical illustration applied in Davidson (2009) is
of interest and is discussed in Section 6.

Barrett and Donald (2009) worked on a similar corpus of literature to that of Davidson
(2009). Their work is said to take grounds in results by Cowell (1989), Bishop et al. (1997),
Xu (2007), Zitikis and Gastwirth (2002) and Zitikis (2003). Barrett and Donald (2009) used
influence functions to derive asymptotic variance expressions for generalized Gini indices (the
‘E-Gini’ and ‘S-Gini’ indices). Cowell and Victoria-Feser (1996) is referred to as one of the
first applications of the influence function in econometrics. The main contribution of the paper
is that the influence function is derived for a whole class of Gini indices and not only for the
classical Gini index. However, references to previous literature on the influence function of the
latter and its use for variance estimation were again nearly completely omitted.

5. Regression-based variance estimation
5.1. Ogwang’s jackknife
AdifferentwayofexpressingtheGini indexhaspromptedanewwaveofpublications.Infact, ithas
been advocated already since the 1980s that the Gini index can be expressed by means of a covari-
ance (Anand, 1983; Lerman and Yitzhaki, 1984; Shalit, 1985). With F.y/ denoting the cumulative
distribution of incomes y, andμ.y/ the mean income, the Gini index can thus be written as

G= 2cov{y, F.y/}
μ.y/

: .14/

This idea has been exploited by Ogwang (2000) to derive a fast algorithm for the computation
of jackknife estimates of the variance of the Gini index. Ogwang (2000) showed that, using
equation (14) and sorting incomes in non-decreasing order, the Gini index estimated by means
of a sample of size n is a function of a regression coefficient such that

Ĝ= n2 −1
6n

β̂

ȳ
,

where ȳ = n−1Σn
i=1yi, β̂ is the ordinary least square estimator of β from the regression model

yi =α+βi+ui, for i= 1, . . . , n, and the error terms ui are assumed to be homoscedastic with
mean 0 and variance σ2. Equivalently, the Gini index can be estimated by
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Ĝ= 2
n
θ̂ −1− 1

n
, .15/

where θ̂ = Σn
i=1iyi=Σn

i=1yi is the weighted least square estimator of θ in the regression model
i = θ + ui with heteroscedastic error ui of variance σ2=yi. Note that equation (15) is equiva-
lent to equation (2). The algorithm that was proposed by Ogwang is fast because it avoids
reranking incomes at each step, i.e. every time that an observation is dropped from the sample.
The Ogwang jackknife variance estimator is

v̂arOj.Ĝ/= n−1
n

n∑
k=1

(
Ĝ.k/ − 1

n

n∑
l=1

Ĝ.l/

)2

, .16/

where Ĝ.k/ is the estimated Gini index of the remaining n−1 observations after deletion of unit
k,

Ĝ.k/ = Ĝ+ 2
n∑

i=1
yi −yk

{
yk θ̂

n
+

n∑
i=1

iyi

n.n−1/
−

n∑
i=1

yi −
k∑

i=1
yi +kyk

n−1

}
− 1

n.n−1/
, .17/

and can be computed as an n-component vector in only one pass through the data. It is crucial
to note that Ĝ.k/ takes into account the fact that the rank of yi changes when observation k is
dropped from the sample and yi �yk. Computing Ĝ.k/ is thus equivalent to applying equation
(15) successively to each sample of size n−1. The standard error SEOj.Ĝ/ is obtained simply by

SEOj.Ĝ/=√
v̂arOj.Ĝ/: .18/

Note that a jackknife estimator had already been applied with satisfactory results by Sand-
ström et al. (1985, 1988) in their simulation study, as well as by others (for a review see Berger
(2008)). In their approach, the Gini index is recomputed on the n − 1 remaining observations
for each jackknife subsample by using expression (7). The result is no different from that of
Ogwang (2000), but the contribution of the latter is that, by using equation (17), computation
becomes far less intensive because all Ĝ.k/s can be computed at once while still taking the rank
changes into account. This is an important feature when the sample size becomes large. A similar
simplification was also proposed by Karagiannis and Kovacevic (2000).

5.2. Direct regression
Later, Giles (2004) suggested a direct analytical variance estimator for the Gini index based on
regression theory. Indeed, as expression (15) shows, Ĝ is a function of a regression coefficient,
and an estimator of the variance of the Gini index can thus be derived directly from the variance
of the regression coefficient by

v̂arreg.Ĝ/= 4
n2 v̂ar.θ̂/, .19/

and, accordingly, the standard error by

SEreg.Ĝ/= 2
n

SE.θ̂/,

where SE.θ̂/ =√
v̂ar.θ̂/ can be obtained from any basic statistical package handling ordinary

least squares or weighted least squares. Thereby, Giles advocated that using the jackknife method
to derive a variance estimator is unnecessary. We argue that this idea is a deep methodologi-

14



cal error and that the variance estimator in equation (19) must not be used. Giles (2004) has
been followed by a discussion concerning the violation of the model assumptions leading to
a substantial overestimation of the variance (Ogwang, 2004, 2006; Giles, 2006; Modarres and
Gastwirth, 2006). Above all, Modarres and Gastwirth (2006) argued that, because the yis are
ordered, they are dependent, and therefore the independence assumption for the error terms in
the regression model does not hold. This dependence is totally ignored in Giles’s proposal. In a
classical regression, the independent variable is supposed to be non-random, which absolutely
does not correspond to the problem of the variance of the Gini index. The solution of Giles
(2004) is thus wrong since he committed the same error as in the first ratio estimator of Sand-
ström et al. (1985, 1988). In other words, he fell into the pitfall that was described in Section 3.3.
The discussion that follows Giles (2004) (see Ogwang (2006), Modarres and Gastwirth (2006)
and Giles (2006)) is a little vain since this problem had already been identified by Deville (1996,
1999). Indeed, as discussed earlier in this paper, the major issue in leading reliable inference for
the Gini index is that the population rank Nk of unit k must be estimated by means of the sample.
Also, the model proposed does not correspond to the way that the data have been produced or
could be modelled, because it assumes that the independent variable is not random. Moreover, as
pointed out by Berger (2008), the regression approach takes no account of the sampling design.

6. Empirical comparisons

Giles (2004) proposed an empirical illustration of the regression-based method by using data
that are available from Heston et al. (1995) for 133 countries. The variable of interest is, for each
country, the real consumption per capita in constant US dollars (international prices based on
year 1985). The Gini index and its standard error were computed for four different time periods
(1970, 1975, 1980 and 1985). In this numerical application, Giles (2004) compared SEreg.Ĝ/

with a jackknife variance estimator which Giles incorrectly attributed to Ogwang (2000) and
showed that both variance estimators behave similarly. However, we shall show hereafter that
the jackknife estimator that was computed by Giles is by no means equal to SEOj.Ĝ/ of expres-
sion (18). Recently, Davidson (2009) used the same data set to compare a linearization variance
estimator based on the delta method with both Giles’s and Ogwang’s approaches. Note that
the linearization estimator that was proposed in Davidson (2009) is equivalent to expression
(9), the only difference being the way that the cumulative distribution function is estimated
in ẑk. Because we have witnessed only a negligible effect in the empirical applications that are
proposed later in this paper, we simply consider both of them under the term linearization
variance estimator and denoted v̂arlin.Ĝ/. We also define

SElin.Ĝ/=√
v̂arlin.Ĝ/,

because standard errors, rather than variances, were reported in both Giles (2004) and Davidson
(2009).

The results of these empirical illustrations are confusing and the conclusions unclear. Indeed,
Giles (2004), who in addition also conducted a simulation, argued that the jackknife approach
produces biased estimates in samples smaller than 5000 observations, where the regression
approach is more reliable, and that both methods tend to converge as the sample size increases.
Thus, the use of the regression method was advocated by Giles because it is computationally
much simpler and allows for some robustness testing.

Davidson (2009) argued in contrast that both methods might be unreliable. When reproducing
the empirical application of Giles, he obtained the same numerical results as the latter and both
approaches are shown to yield much larger variance estimators than the linearization method.
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When analysing the results, however, Davidson (2009) did not clearly discard the jackknife and
regression estimators. No clear comment is made on the quality of the three estimators and on
the discrepancies between them.

Hereafter, we show that the regression approach is conceptually wrong and that, when used
correctly as suggested by Ogwang (2000), the jackknife provides reliable estimates in addition to
being computationally straightforward. Both Giles (2004) and Davidson (2009) used the same
method for computing the jackknife variance estimator and, obviously, the estimator is not that
proposed in equation (16). The jackknife approach that was used in Giles (2004) and David-
son (2009) is hereafter denoted the Davidson–Giles jackknife DGj and the resulting variance
estimator is

v̂arDGj.Ĝ/= n−1
n

n∑
k=1

(̂̃
G.k/ − 1

n

n∑
l=1

̂̃
G.k/

)2

, .20/

where
̂̃
G.k/ is the Gini index computed by using expression (15) directly on the n−1 values with-

out taking into account the effect of dropping unit k on the ranks of the other sampled units
(i.e. without recomputing θ̂ each time that a unit is dropped). Likewise, the standard error is

SEDGj.Ĝ/=√
v̂arDGj.Ĝ/:

Within the procedure of Davidson and Giles, the rank of observation yi is kept constant among
all the n jackknife subsamples, whereas in fact, as discussed in Section 3.3, the ranks depend
on the sample and should thus be recalculated within each jackknife subsample. This issue is
taken into account in equation (16) but not in equation (20). In our empirical study below, we
show that equation (20) leads to a heavy overestimation of the variance, as was the case with
the direct regression approach. Indeed, using this version of the jackknife is nothing other than
falling again into the pitfall that was described in Section 3.3. In addition to the fact that the
jackknife estimator is computed incorrectly, these empirical illustrations have another major
issue: because the set-up is not that of a repeated random-sampling simulation method, the
estimates obtained cannot be compared with a Monte Carlo variance which would mimic the
true value. Thus, it is not possible to assess the genuine reliability of the variance estimators
proposed.

To take these issues into account, we first repeat the exact empirical set-up that was proposed
by Giles (2004) and Davidson (2009) and add a fourth estimator, the Ogwang jackknife estimator
SEOj.Ĝ/. Subsequently, we use the same data to perform a Monte Carlo simulation study using
two different sample sizes. In both numerical illustrations, only data for the year 1970 are used.

Table 1 summarizes the results of the first replication. The figures of the previous studies are
reported for comparison. Note that the results we produced are exactly the same as in David-
son (2009) and that they differ very slightly from those of Giles (2004), probably because the
data were processed differently to create the desired real consumption per capita variable. These
results show that the Ogwang jackknife algorithm gives a variance estimator that is very close
to the linearization estimator and very different from the other two estimators, showing that
taking the changes of the ranks into account in the jackknife procedure has a massive effect on
variance estimation.

We then proceed to a Monte Carlo simulation set-up on the same data. 10000 simple random
samples of size n=30 are drawn without replacement from the full data of N =133 countries. On
each sample, the Gini index Ĝ as well as the four competing variance estimators are computed.
The Monte Carlo standard error of the Gini index, which is denoted SEsim.Ĝ/, is then com-
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Table 1. Standard errors of Ĝ by using different approaches (data from Heston et al.
(1995), year 1970) and comparing results obtained in Giles (2004), Davidson (2009)
and in our replication

Method SEreg(Ĝ), SEDGj(Ĝ), SElin(Ĝ), SEOj(Ĝ),
regression Davidson–Giles linearization Ogwang
approach jackknife approach jackknife

Giles (2004) 0.0417 0.0481
Davidson (2009) 0.0418 0.0478 0.0173
Our replication 0.0418 0.0478 0.0173 0.0176

Table 2. Simulation results: standard errors of Ĝ by using various approaches†

Method Standard errors for
the following values of n:

n=30 n=100

Regression approach Esim[SEreg.Ĝ/] 0.0896 0.0483
Davidson–Giles jackknife Esim[SEDGj.Ĝ/] 0.1066 0.0554
Linearization approach Esim[SElin.Ĝ/] 0.0333 0.0100
Ogwang jackknife Esim[SEOj.Ĝ/] 0.0355 0.0102
Monte Carlo estimator SEsim.Ĝ/ 0.0337 0.0101

†Data from Heston et al. (1995), year 1970; 10000 replicates; simple random sampling
without replacement.

puted on the 10000 estimators of G obtained. The value of SEsim.Ĝ/ is the benchmark to which
the four estimators can be compared. The exact same simulation set-up was also conducted
with a larger sample size of n= 100. In Table 2, the Monte Carlo expected value Esim[SE.Ĝ/]
for each method is reported. The right-hand column contains the Monte Carlo value which
approximates the true value for each sample size. Results show that the linearization technique
as well as the jackknife provide reliable estimates for the variance of the Gini index. Indeed,
both methods give estimators that are close to the Monte Carlo estimator. Unlike what has been
reported previously, the jackknife procedure that was proposed by Ogwang (2000) is valid if
applied correctly. On the contrary, the two methods that do not account for the rank issue yield
unsatisfactory results. As suggested earlier in the paper, the variance is greatly overestimated
when these approaches are used. In our simulations, for example, the variance that is estimated
by the regression approach is overestimated by a factor of more than 20 with a sample size of
n=100. We thus point out that the main problem with the regression-based variance estimation
is that the rank is not identified as a major source of randomness, leading to overestimation.
The method should therefore be avoided.

7. Conclusion

As this paper tries to illustrate, the computation of variance of the Gini index has been subject
to many publications. For numerous reasons, the same results have been republished several
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times. The segmentation of the different research fields and the multiplicity of methods that can
be applied to obtain an approximation of variance are probably the main causes of this phe-
nomenon. Indeed, an examination of the references in the publications clearly shows the lack
of communication between statisticians, economists and survey statisticians. As a consequence,
the same ‘mistakes’ have been reproduced when tackling the problem, an example being the
recent regression-based variance estimator that was suggested by Giles (2004).

In addition to giving a small contribution (the linearization of a double sum) which tends to
simplify the problem, we try to propose a global picture of the state of the art regarding inference
for the Gini index. We hope that the paper clarifies the situation to a much larger extent than
previous survey papers on the Gini index have. We also hope that it will provide researchers from
different fields with an update on what is done elsewhere as well as a comprehensive survey of
the literature. Finally, we hope that it will enlighten the reader on the interesting issues regarding
inference on a non-linear statistic and on the various possible approaches leading to the result.
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Appendix A: Proof of result 3

For direct computation of the linearized variable of the double sum (e.g. quadratic form)

S = ∑
k∈U

∑
l∈U

φ.yk, yl/,

let

C.t/= 1
t
{S.M + tδξ/−S.M/}

= 1
t

{∫ ∫
φ.x, y/d.M + tδξ/.x/d.M + tδξ/.y/−

∫ ∫
φ.x, y/dM.x/dM.y/

}

= 1
t

∫ {∫
φ.x, y/d.M + tδξ/.x/−

∫
φ.x, y/dM.x/

}
dM.y/

+ 1
t

∫ ∫
φ.x, y/d.M + tδξ/.x/d.tδξ/.y/

= 1
t

{∫ ∫
φ.x, y/dM.y/d.M + tδξ/.x/−

∫ ∫
φ.x, y/dM.y/dM.x/

}

+
∫

φ.x, ξ/d.M + tδξ/.x/:

We obtain

IS.M, ξ/= lim
t→0

C.t/=
∫

φ.ξ, y/dM.y/+
∫

φ.x, ξ/dM.x/:
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